Optical Design and specifications for the 90-in Prime Focus Corrector Part 1: specifications and tolerances

Revision E-2

Jim Burge

October 26, 2000

This memo summarizes the optical design for the 90-in Prime Focus Corrector. The final specifications and tolerances for the individual lenses and for the mounting are given. Part 2 of this memo gives the analysis of the performance of the optical system.

Design revisions:

Rev. A	Sept. 1, 1999 – original memo
Rev. B	Sept. 9, 1999
	Filter moved 28 mm towards the CCD
	(spacing from filter to lens 4 changed from 44 to 16 mm
	spacing from lens 3 to filter changed from 172 to 200 mm)
	Drawing and tables modified to reflect this change
	This does not affect performance
Rev. C	Oct. 25, 1999
	Incorporated measurements of the primary mirror from Sarlot et al.
	Some lens spacings were changed
	The figure on the aspheric surface was changed (Lens 2, concave surface)
	The overall performance and the tolerances are not affected
Rev D	April 20, 2000
	Accommodated radius change for L2 for available test plate
	Incorporated as-built dimensions for L3, L4 (they were within spec)
	Slight re-spacing of elements to re-optimize

Rev E October 26, 2000

Changed field of view to accommodate 69 x 69 mm focal plane Changed Lens 4 to 254 mm diameter, 22.5 mm center thick (19 mm edge thick). Filter – L4 spacing set at 19 mm Respaced, using only PM-L1 and L3-L4 to optimize performance

System specifications

Primary mirror (from Sarlot et al.)						
Radius of curvature R	$12281 \pm 4 \text{ mm}$					
Conic constant K	-1.0646 ± 0.001					
Clear aperture D	$90" \pm 0.06"$					
Central obscuration	$33.5 \pm 0.1"$					

Spacings (in mm)

<u>spacings (in min)</u>					
	Rev. E	Rev. E change	Rev. D	Rev. C	Rev B
Primary mirror – Lens1 spacing	5010.9 ± 1	√	5010.4 ± 1	5009.4 ± 1	4958.2 ± 1
Lens1 thickness	45 ± 0.1		45 ± 0.1	45 ± 0.1	45 ± 0.1
Lens1 – Lens2 spacing	429.9 ± 0.3		429.9 ± 0.3	430.5 ± 0.3	434.8 ± 0.3
Lens2 thickness	14 ± 0.1		14 ± 0.1	14 ± 0.1	14 ± 0.1
Lens2 – Lens3 spacing	441.6 ± 0.3		441.6 ± 0.3	442.3 ± 0.3	450.8 ± 0.3
Lens3 thickness	30.21 ± 0.005		30.21 ± 0.005	30 ± 0.3	30 ± 0.3
Lens3 – filter spacing	197.5 ± 5	\checkmark	204.4 ± 5	204.9 ± 5	200.± 5
(focus adjust for system)					
Filter thickness	8 ± 4		8 ± 4	8 ± 4	8 ± 4
Filter – Lens4 spacing	19 ± 3	\checkmark	16 ± 3	16 ± 3	16 ± 3
Lens4 thickness	22.5 ± 0.5	\checkmark	17.75 ± 0.005	17.3 ± 0.5	17.3 ± 0.5
Lens4 – focal plane spacing	5 ± 1		5 ± 1	5 ± 1	5 ± 1
Overall length Lens 1 to FP	1213	\checkmark	1212	1213	1221

The system effective focal length is 6830.0 mm

The overall design is shown below. We have divided the system into two parts – Can 1 and Can 2. Can 1 which holds the filter mechanism, Lens 4 (which is the dewar window) and the focal plane array. Can 2 holds Lens1, Lens 2, and Lens 3. The entire unit is supported by a spider, which is bolted to the telescope.

The requirements for the systems are

<u>Overall system, supported by spider</u> Held with Lens1 – PM distance of 5010 ± 5 . (Must maintain this to ± 1 mm.) Centered to telescope axis to 0.1 mm Aligned in rotation to 0.05 mrad (about middle of system)

Can 1, Focal plane assembly Driven axially for focus adjustment 10 μm resolution and stability for axial motion 0.2 mrad rotation about interface to Can 2 0.5 mm centration Can 2, Lens housing 50 μm stability for axial motion 0.1 mrad rotation about interface to Can 1 0.1 mm centration

Prime Focus Corrector

Rev. E-2, October 26, 2000

Lens 1 Rev E. (No change from Rev A)

Material

Fused silica (equivalent with Amersil Grade 4000 or Hereaus Herasil 3) Refractive index inhomogeneity < 1e-5 P-V Birefringence < 10 nm/cm Total inclusion cross section < 1 mm/100 cc Maximum inclusion 1 mm

Lens 2 – Rev. E. (No change from Rev D)

Material

Fused silica (equivalent with Amersil Grade 4000 or Hereaus Herasil 3) Refractive index inhomogeneity < 1e-5 P-V Birefringence < 10 nm/cm Total inclusion cross section < 1 mm/100 cc Maximum inclusion 0.76 mm

Lens 3 Rev E (no change from Rev D)

All dimensions shown AS_BUILT

Material

Fused silica (equivalent with Amersil Grade 4000 or Hereaus Herasil 3) Refractive index inhomogeneity < 1e-5 P-V Birefringence < 10 nm/cm Total inclusion cross section < 1 mm/100 cc Maximum inclusion 0.76 mm

Lens 4 Rev E (Replaces Rev D)

Outside diameter Center thickness (Edge thickness Wedge	254 22.5 ± 0.5 mm 19.1 mm) < 0.05 mm	Surface 2 CA2 R2 Power	205 Flat (1 fringe concave over full aperture))
Surface 1 CA1 205 R1 2370.5 Figure Measur 100 mr 4 fringe 2 fringe	± 20 mm red by Kreisher n test plate es power es irregularity	Figure	Measured with 100 mm test plate 4 fringes power 2 fringes irregularity

Material

Fused silica (Amersil Grade 4100 or Hereaus Herasil 2) Refractive index inhomogeneity < 6e-6 P-V Birefringence < 10 nm/cm Total inclusion cross section < .1 mm/100 cc Maximum inclusion 0.3 mm