Optical Design and specifications for the 90-in Prime Focus Corrector Part 1: specifications and tolerances

Revision E-2

Jim Burge

October 26, 2000
This memo summarizes the optical design for the 90 -in Prime Focus Corrector. The final specifications and tolerances for the individual lenses and for the mounting are given. Part 2 of this memo gives the analysis of the performance of the optical system.

Design revisions:
Rev. A Sept. 1, 1999 - original memo
Rev. B Sept. 9, 1999
Filter moved 28 mm towards the CCD
(spacing from filter to lens 4 changed from 44 to 16 mm
spacing from lens 3 to filter changed from 172 to 200 mm)
Drawing and tables modified to reflect this change
This does not affect performance
Rev. C Oct. 25, 1999
Incorporated measurements of the primary mirror from Sarlot et al.
Some lens spacings were changed
The figure on the aspheric surface was changed (Lens 2, concave surface)
The overall performance and the tolerances are not affected
Rev D April 20, 2000
Accommodated radius change for L2 for available test plate
Incorporated as-built dimensions for L3, L4 (they were within spec)
Slight re-spacing of elements to re-optimize
Rev E October 26, 2000
Changed field of view to accommodate $69 \times 69 \mathrm{~mm}$ focal plane
Changed Lens 4 to 254 mm diameter, 22.5 mm center thick (19 mm edge thick).
Filter - L4 spacing set at 19 mm
Respaced, using only PM-L1 and L3-L4 to optimize performance

System specifications

Primary mirror (from Sarlot et al.)
Radius of curvature R $\quad 12281 \pm 4 \mathrm{~mm}$
Conic constant K $\quad-1.0646 \pm 0.001$
Clear aperture D $\quad 90 " \pm 0.06 "$
Central obscuration $\quad 33.5 \pm 0.1$ "

Spacings (in mm)

	Rev. E	Rev. E change	Rev. D	Rev. C	Rev B
Primary mirror - Lens1 spacing	5010.9 ± 1	\checkmark	5010.4 ± 1	5009.4 ± 1	4958.2 ± 1
Lens1 thickness	45 ± 0.1		45 ± 0.1	45 ± 0.1	45 ± 0.1
Lens1 - Lens2 spacing	429.9 ± 0.3		429.9 ± 0.3	430.5 ± 0.3	434.8 ± 0.3
Lens2 thickness	14 ± 0.1		14 ± 0.1	14 ± 0.1	14 ± 0.1
Lens2 - Lens3 spacing	441.6 ± 0.3		441.6 ± 0.3	442.3 ± 0.3	450.8 ± 0.3
Lens3 thickness	30.21 ± 0.005		$\begin{aligned} & 30.21 \pm \\ & 0.005 \end{aligned}$	30 ± 0.3	30 ± 0.3
Lens3 - filter spacing (focus adjust for system)	197.5 ± 5	\checkmark	204.4 ± 5	204.9 ± 5	$200 . \pm 5$
Filter thickness	8 ± 4		8 ± 4	8 ± 4	8 ± 4
Filter - Lens4 spacing	19 ± 3	\checkmark	16 ± 3	16 ± 3	16 ± 3
Lens4 thickness	22.5 ± 0.5	\checkmark	$\begin{aligned} & 17.75 \pm \\ & 0.005 \end{aligned}$	17.3 ± 0.5	17.3 ± 0.5
Lens4 - focal plane spacing	5 ± 1		5 ± 1	5 ± 1	5 ± 1
Overall length Lens 1 to FP	1213	\checkmark	1212	1213	1221

The system effective focal length is 6830.0 mm

The overall design is shown below. We have divided the system into two parts - Can 1 and Can 2. Can 1 which holds the filter mechanism, Lens 4 (which is the dewar window) and the focal plane array. Can 2 holds Lens1, Lens 2, and Lens 3. The entire unit is supported by a spider, which is bolted to the telescope.

The requirements for the systems are
Overall system, supported by spider
Held with Lens 1 - PM distance of 5010 ± 5. (Must maintain this to $\pm 1 \mathrm{~mm}$.)
Centered to telescope axis to 0.1 mm
Aligned in rotation to 0.05 mrad (about middle of system)

Can 1, Focal plane assembly
Driven axially for focus adjustment $10 \mu \mathrm{~m}$ resolution and stability for axial motion 0.2 mrad rotation about interface to Can 2 0.5 mm centration

Can 2, Lens housing
$50 \mu \mathrm{~m}$ stability for axial motion
0.1 mrad rotation about interface to Can 1
0.1 mm centration

Primary mirror

Lens 1 Rev E. (No change from Rev A)

[^0]
Lens 2 - Rev. E. (No change from Rev D)

Outside diameter Center thickness (Edge thickness 320.65 as built $14.0 \pm 0.1 \mathrm{~mm}$ 43 mm) Wedge	

[^1]Ellipse test - Rev. D

Measure interferometrically using natural conjugate points for the ellipse

The radius of curvature and conic constant tolerances follow from the tolerances defined for the test conjugates.
$\mathrm{C} 1=623.9 \pm 0.3 \mathrm{~mm}$
$\mathrm{C} 2=208.5 \pm 0.1 \mathrm{~mm}$
Rms surface slopes <0.2 waves $/ \mathrm{cm}$

Lens 3 Rev E (no change from Rev D)

All dimensions shown AS_BUILT

Material
Fused silica (equivalent with Amersil Grade 4000 or Hereaus Herasil 3)
Refractive index inhomogeneity $<1 \mathrm{e}-5 \mathrm{P}-\mathrm{V}$
Birefringence $<10 \mathrm{~nm} / \mathrm{cm}$
Total inclusion cross section $<1 \mathrm{~mm} / 100 \mathrm{cc}$
Maximum inclusion 0.76 mm

Lens 4 Rev E (Replaces Rev D)

Surface 2	
CA2	205
R2	Flat (1 fringe concave
	over full aperture) $)$
Power	<10 fringes $/ 100 \mathrm{~mm}$
Figure	Measured with 100 mm 2 fringes plate 2 fringes irregularity

[^2]
[^0]: Material
 Fused silica (equivalent with Amersil Grade 4000 or Hereaus Herasil 3)
 Refractive index inhomogeneity $<1 \mathrm{e}-5 \mathrm{P}-\mathrm{V}$
 Birefringence $<10 \mathrm{~nm} / \mathrm{cm}$
 Total inclusion cross section $<1 \mathrm{~mm} / 100 \mathrm{cc}$
 Maximum inclusion 1 mm

[^1]: Material
 Fused silica (equivalent with Amersil Grade 4000 or Hereaus Herasil 3)
 Refractive index inhomogeneity $<1 \mathrm{e}-5 \mathrm{P}-\mathrm{V}$
 Birefringence $<10 \mathrm{~nm} / \mathrm{cm}$
 Total inclusion cross section $<1 \mathrm{~mm} / 100 \mathrm{cc}$
 Maximum inclusion 0.76 mm

[^2]: Material
 Fused silica (Amersil Grade 4100 or Hereaus Herasil 2)
 Refractive index inhomogeneity $<6 \mathrm{e}-6 \mathrm{P}-\mathrm{V}$
 Birefringence $<10 \mathrm{~nm} / \mathrm{cm}$
 Total inclusion cross section $<.1 \mathrm{~mm} / 100 \mathrm{cc}$
 Maximum inclusion 0.3 mm

